Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 30, 2026
-
Free, publicly-accessible full text available June 16, 2026
-
Free, publicly-accessible full text available June 21, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available February 5, 2026
-
Researchers across various fields seek to understand causal relationships but often find controlled experiments impractical. To address this, statistical tools for causal discovery from naturally observed data have become crucial. Non-linear regression models, such as Gaussian process regression, are commonly used in causal inference but have limitations due to high costs when adapted for secure computation. Support vector regression (SVR) offers an alternative but remains costly in an Multi-party computation context due to conditional branches and support vector updates. In this paper, we propose Aitia, the first two-party secure computation protocol for bivariate causal discovery. The protocol is based on optimized multi-party computation design choices and is secure in the semi-honest setting. At the core of our approach is BSGD-SVR, a new non-linear regression algorithm designed for MPC applications, achieving both high accuracy and low computation and communication costs. Specifically, we reduce the training complexity of the non-linear regression model from approximately from O (𝑁^3) to O (𝑁^2) where 𝑁 is the number of training samples. We implement Aitia using CrypTen and assess its performance across various datasets. Empirical evaluations show a significant speedup of 3.6× to 340× compared to the baseline approach.more » « less
-
Humans often use natural language instructions to control and interact with robots for task execution. This poses a big challenge to robots that need to not only parse and understand human instructions but also realise semantic understanding of an unknown environment and its constituent elements. To address this challenge, this study presents a vision-language model (VLM)-driven approach to scene understanding of an unknown environment to enable robotic object manipulation. Given language instructions, a pretrained vision-language model built on open-sourced Llama2-chat (7B) as the language model backbone is adopted for image description and scene understanding, which translates visual information into text descriptions of the scene. Next, a zero-shot-based approach to fine-grained visual grounding and object detection is developed to extract and localise objects of interest from the scene task. Upon 3D reconstruction and pose estimate establishment of the object, a code-writing large language model (LLM) is adopted to generate high-level control codes and link language instructions with robot actions for downstream tasks. The performance of the developed approach is experimentally validated through table-top object manipulation by a robot.more » « less
An official website of the United States government

Full Text Available